DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT595

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

File under Integrated Circuits, IC06

PHILIPS

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

FEATURES

- 8-bit serial input
- 8-bit serial or parallel output
- Storage register with 3-state outputs
- Shift register with direct clear
- 100 MHz (typ) shift out frequency
- Output capability:
- parallel outputs; bus driver
- serial output; standard
- ICC category: MSI.

APPLICATIONS

- Serial-to-parallel data conversion
- Remote control holding register.

DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 595$ are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The " 595 " is an 8 -stage serial shift register with a storage register and 3 -state outputs. The shift register and storage register have separate clocks.

Data is shifted on the positive-going transitions of the $\mathrm{SH}_{\mathrm{CP}}$ input. The data in each register is transferred to the storage register on a positive-going transition of the $\mathrm{ST}_{\mathrm{CP}}$ input. If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register.
The shift register has a serial input (D_{S}) and a serial standard output (Q_{7} ') for cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input (OE) is LOW.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYP.		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $S H_{C P}$ to $Q_{7}{ }^{\prime}$ $S T_{C P}$ to Q_{n} $\overline{\mathrm{MR}}$ to Q_{7} '	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 16 \\ & 17 \\ & 14 \end{aligned}$	$\begin{array}{\|l} 21 \\ 20 \\ 19 \end{array}$	ns ns ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency $\mathrm{SH}_{\mathrm{CP}}, \mathrm{ST}_{\mathrm{CP}}$		100	57	MHz
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per package	notes 1 and 2	115	130	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\left.\mu \mathrm{W}\right)$:
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; for HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.

8 -bit serial-in/serial or parallel-out shift
74HC/HCT595 register with output latches; 3-state

ORDERING INFORMATION

| TYPE NUMBER | PACKAGE | | |
| :--- | :--- | :--- | :--- | :--- |
| | NAME | DESCRIPTION | VERSION |
| 74HC595N | DIP16 | plastic dual in-line package; 16 leads (300 mil); long body | SOT38-1 |
| 74HC595D | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 |
| 74HC595DB | SSOP16 | plastic shrink small outline package; 16 leads; body width 5.3 mm | SOT338-1 |
| 74HC595PW | TSSOP16 | plastic thin shrink small outline package; 16 leads; body width 4.4 mm | SOT403-1 |
| 74HCT595N | DIP16 | plastic dual in-line package; 16 leads (300 mil); long body | SOT38-1 |
| 74HCT595D | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 |

PINNING

SYMBOL	PIN	DESCRIPTION
Q_{0} to Q_{7}	15,1 to 7	parallel data output
GND^{\prime}	8	ground (0 V)
Q_{7}	9	serial data output
$\overline{\mathrm{MR}}$	10	master reset (active LOW)
$\mathrm{SH}_{\mathrm{CP}}$	11	shift register clock input
$\mathrm{ST}_{\mathrm{CP}}$	12	storage register clock input
$\overline{\mathrm{OE}}$	13	output enable (active LOW)
D_{S}	14	serial data input
V_{CC}	16	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Fig. 4 Functional diagram.

Fig. 5 Logic diagram.

8 -bit serial-in/serial or parallel-out shift register with output latches; 3-state

FUNCTION TABLE

INPUTS					OUTPUTS		FUNCTON
SH ${ }_{\text {CP }}$	ST ${ }_{\text {CP }}$	$\overline{\mathrm{OE}}$	$\overline{\text { MR }}$	D_{s}	$\mathrm{Q}_{7}{ }^{\text {' }}$	Q_{N}	
X	X	L	L	X	L	NC	a LOW level on $\overline{\overline{M R}}$ only affects the shift registers
X	\uparrow	L	L	X	L	L	empty shift register loaded into storage register
X	X	H	L	X	L	Z	shift register clear. Parallel outputs in high-impedance OFF-state
\uparrow	X	L	H	H	$\mathrm{Q}_{6}{ }^{\prime}$	NC	logic high level shifted into shift register stage 0 . Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q_{6}) appears on the serial output (Q_{7})
X	\uparrow	L	H	X	NC	Q_{n} '	contents of shift register stages (internal $Q_{n}{ }^{\prime}$) are transferred to the storage register and parallel output stages
\uparrow	\uparrow	L	H	X	$\mathrm{Q}_{6}{ }^{\prime}$	Q^{\prime}	contents of shift register shifted through. Previous contents of the shift register is transferred to the storage register and the parallel output stages.

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level; $\mathrm{L}=\mathrm{LOW}$ voltage level
$\uparrow=$ LOW-to-HIGH transition; $\downarrow=$ HIGH-to-LOW transition
$\mathrm{Z}=$ high-impedance OFF-state; $N \mathrm{NC}=$ no change
X = don't care.

8-bit serial-in/serial or parallel-out shift
 74HC/HCT595 register with output latches; 3-state

Fig. 6 Timing diagram.

8-bit serial-in/serial or parallel-out shift

74HC/HCT595 register with output latches; 3-state

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: parallel outputs, bus driver, serial output, standard I ${ }_{\mathrm{CC}}$ category: MSI.

AC CHARACTERISTICS FOR 74HC

$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITION	
		+25			-40 to +85		-40 to +125				
		min	typ	max	min	max	min	max		(V)	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{SH}_{\mathrm{CP}}$ to Q_{7}	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	$\begin{aligned} & 52 \\ & 19 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} \hline 160 \\ 32 \\ 27 \end{array}$		$\begin{array}{\|l\|} \hline 200 \\ 40 \\ 34 \end{array}$		$\begin{array}{\|l\|} \hline 240 \\ 48 \\ 41 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $S T_{C P}$ to Q_{n}	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 55 \\ & 20 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 175 \\ 35 \\ 30 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \end{array}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 8
$\mathrm{t}_{\text {PHL }}$	propagation delay $\overline{M R}$ to Q_{7}	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 47 \\ & 17 \\ & 14 \end{aligned}$	$\begin{aligned} & 175 \\ & 35 \\ & 30 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l} 265 \\ 53 \\ 45 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 10
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{\mathrm{OE}}$ to Q_{n}	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	$\begin{aligned} & 47 \\ & 17 \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 11
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{O E}$ to Q_{n}	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	$\begin{aligned} & 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 11
tw	shift clock pulse width HIGH or LOW	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{array}{\|l} 17 \\ 6 \\ 5 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \end{array}$	$\left.\right\|_{-} ^{-}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
tw	storage clock pulse width HIGH or LOW	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ 4 \\ 3 \end{array}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \end{array}$	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 8
tw	master reset pulse width LOW	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 17 \\ 6.0 \\ 5.0 \end{array}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 10
$\mathrm{t}_{\text {su }}$	set-up time D_{S} to $\mathrm{SH}_{\mathrm{CP}}$	$\begin{aligned} & \hline 50 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ 4.0 \\ 3.0 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 65 \\ & 13 \\ & 11 \end{aligned}$	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 9
$\mathrm{t}_{\text {su }}$	set-up time $\mathrm{SH}_{\mathrm{CP}}$ to $\mathrm{ST}_{\mathrm{CP}}$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 22 \\ 8 \\ 7 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & \hline 95 \\ & 19 \\ & 16 \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8

8 -bit serial-in/serial or parallel-out shift

 register with output latches; 3-state74HC/HCT595

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITION	
		+25			-40 to +85		-40 to +125			$V_{\text {cc }}$ (V)	WAVEFORMS
		min	typ	max	min	max	min	max			
t_{n}	hold time D_{S} to $\mathrm{SH}_{\mathrm{CP}}$	$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 3 \end{array}$	$\begin{aligned} & -6 \\ & -2 \\ & -2 \end{aligned}$		$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 3 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 3 \end{array}$	$\left.\right\|_{-} ^{-}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 9
$\mathrm{t}_{\text {rem }}$	removal time $\overline{\mathrm{MR}}$ to $\mathrm{SH}_{\mathrm{CP}}$	$\begin{array}{\|l\|} \hline 50 \\ 10 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline-19 \\ -7 \\ -6 \end{array}$		$\begin{aligned} & \hline 65 \\ & 13 \\ & 11 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\left.\right\|_{-} ^{-}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 10
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency $\mathrm{SH}_{\mathrm{CP}}$ or $\mathrm{ST}_{\mathrm{CP}}$	$\begin{array}{\|l\|} \hline 9 \\ 30 \\ 35 \end{array}$	$\begin{aligned} & \hline 30 \\ & 91 \\ & 108 \end{aligned}$		$\begin{array}{\|l\|} \hline 4.8 \\ 24 \\ 28 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 4 \\ 20 \\ 24 \end{array}$		MHz	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Figs 7 and 8

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: parallel outputs, bus driver; serial output, standard I CC category: MSI.

Note to HCT types

The value of additional quiescent supply current $\left(\Delta \mathrm{I}_{\mathrm{CC}}\right)$ for a unit load of 1 is given in the family specifications. To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

	INPUT
D_{S}	UNIT LOAD COEFFICIENT
$\overline{\mathrm{MR}}$	0.25
$\mathrm{SH}_{\mathrm{CP}}$	1.50
ST	1.50
$\overline{\mathrm{OE}}$	1.50

8 -bit serial-in/serial or parallel-out shift

74HC/HCT595 register with output latches; 3-state

AC CHARACTERISTICS FOR 74HCT

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITION	
		+25			-40 to +85		-40 to +125			$V_{C C}$ (V)	WAVEFORMS
		min	typ	max	min	max	min	max			
tPHL/ ${ }_{\text {PLL }}$	propagation delay $\mathrm{SH}_{\mathrm{CP}}$ to Q_{7}	-	25	42	-	53	-	63	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $S T_{C P}$ to Q_{n}	-	24	40	-	50	-	60	ns	4.5	Fig. 8
$\mathrm{t}_{\text {PHL }}$	propagation delay $\overline{M R}$ to Q_{7}^{\prime}	-	23	40	-	50	-	60	ns	4.5	Fig. 10
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{\mathrm{OE}}$ to Q_{n}	-	21	35	-	44	-	53	ns	4.5	Fig. 11
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{\mathrm{OE}}$ to Q_{n}	-	18	30	-	38	-	45	ns	4.5	Fig. 11
tw	shift clock pulse width HIGH or LOW	16	6	-	20	-	24	-	ns	4.5	Fig. 7
t_{w}	storage clock pulse width HIGH or LOW	16	5	-	20	-	24	-	ns	4.5	Fig. 8
tw	master reset pulse width LOW	20	8	-	25	-	30	-	ns	4.5	Fig. 10
$\mathrm{t}_{\text {su }}$	set-up time D_{S} to SH ${ }_{\text {SP }}$	16	5	-	20	-	24	-	ns	4.5	Fig. 9
$\mathrm{t}_{\text {su }}$	set-up time $\mathrm{SH}_{\mathrm{CP}}$ to $\mathrm{ST}_{\mathrm{CP}}$	16	8	-	20	-	24	-	ns	4.5	Fig. 8
t_{n}	hold time D_{S} to $\mathrm{SH}_{\mathrm{CP}}$	3	-2	-	3	-	3	-	ns	4.5	Fig. 9
trem	removal time $\overline{\mathrm{MR}}$ to $\mathrm{SH}_{\mathrm{CP}}$	10	-7	-	13	-	15	-	ns	4.5	Fig. 10
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency $\mathrm{SH}_{\mathrm{CP}}$ or $\mathrm{ST}_{\mathrm{CP}}$	30	52	-	24	-	20	-	MHz	4.5	Figs 7 and 8

8 -bit serial-in/serial or parallel-out shift

 register with output latches; 3-state
AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc} $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 7 Waveforms showing the clock $\left(\mathrm{SH}_{\mathrm{CP}}\right)$ to output $\left(\mathrm{Q}_{7}\right.$) propagation delays, the shift clock pulse width and maximum shift clock frequency.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC} $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 8 Waveforms showing the storage clock $\left(S T_{C P}\right)$ to output $\left(Q_{n}\right)$ propagation delays, the storage clock pulse width and the shift clock to storage clock set-up time.

8-bit serial-in/serial or parallel-out shift

 register with output latches; 3-state
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC} $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 9 Waveforms showing the data set-up and hold times for the D_{S} input.

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

(1) $H C: V_{M}=50 \% ; V_{I}=G N D$ to $V_{C c}$ $H C T: V_{M}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 11 Waveforms showing the 3-state enable and disable times for input $\overline{\mathrm{OE}}$.

8 -bit serial-in/serial or parallel-out shift register with output latches; 3-state

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body
SOT38-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	$\begin{gathered} \mathbf{A}_{2} \\ \max . \end{gathered}$	b	b_{1}	C	$D^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	W	$Z_{\max }^{(1)}$
mm	4.7	0.51	3.7	$\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 21.8 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.3 \end{aligned}$	0.254	2.2
inches	0.19	0.020	0.15	$\begin{aligned} & 0.055 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT38-1	050G09	MO-001AE		\square (9)	$\begin{aligned} & 92-10-02 \\ & 95-01-19 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & \hline 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & \hline 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		\square ¢	$\begin{aligned} & 95-01-23 \\ & 97-05-22 \end{aligned}$

8 -bit serial-in/serial or parallel-out shift

74HC/HCT595 register with output latches; 3-state

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	2.0	0.21 0.05	1.80	0.25	0.38	0.20	6.4	5.4	0.6	7.9	1.25	1.03	0.9	0.2	0.13	0.1	1.00	8^{0}
0.25	0.09	6.0	5.2	0.65	7.6		0.63	0.7	0.2	0.13	0.55	0°						

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT338-1		MO-150AC			-	

8 -bit serial-in/serial or parallel-out shift

 register with output latches; 3-state

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{2})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.10	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.65	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.40	8°
	0.05	0.80	0.25	0.19	0.1	4.9	4.3		6.2		0.50	0.3	0.2	0.13	0°			

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT403-1		MO-153		\square ¢	$\begin{aligned} & -94-07-12 \\ & 95-04-04 \end{aligned}$

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398652 90011).

DIP

Soldering by dipping or by wave
The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\mathrm{stg} \max }$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO, SSOP and TSSOP

Reflow soldering

Reflow soldering techniques are suitable for all SO, SSOP and TSSOP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method.

Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering can be used for all SO packages. Wave soldering is not recommended for SSOP and TSSOP packages, because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.
If wave soldering is used - and cannot be avoided for SSOP and TSSOP packages - the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

74HC/HCT595

Even with these conditions:

- Only consider wave soldering SSOP packages that have a body width of 4.4 mm , that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).
- Do not consider wave soldering TSSOP packages with 48 leads or more, that is TSSOP48 (SOT362-1) and TSSOP56 (SOT364-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

